Modelling a Linker Mix‐and‐Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks

نویسندگان

  • Ricardo Grau-Crespo
  • Alex Aziz
  • Angus W Collins
  • Rachel Crespo-Otero
  • Norge C Hernández
  • L Marleny Rodriguez-Albelo
  • A Rabdel Ruiz-Salvador
  • Sofia Calero
  • Said Hamad
چکیده

Tuning the electronic structure of metal-organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole-based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn-based ZIFs with respect to the vacuum level. Structures with a single type of linker exhibit relatively wide band gaps; however, by mixing linkers of a low-lying conduction edge with linkers of a high-lying valence edge, we can predict materials with ideal band positions for visible-light water splitting and CO2 reduction photocatalysis. By introducing copper in the tetrahedral position of the mixed-linker ZIFs, it would be possible to increase both photo-absorption and the electron-hole recombination times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)

Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...

متن کامل

Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks.

Solvent-assisted linker exchange (SALE) has recently emerged as an attractive strategy for the synthesis of metal-organic frameworks (MOFs) that are unobtainable via traditional synthetic pathways. Herein we present the first example of selective SALE in which only the benzimiadazolate-containing linkers in a series of mixed-linker zeolitic imidazolate frameworks (ZIF-69, -78, and -76) are repl...

متن کامل

NMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks

NMR relaxation studies and spectroscopic measurements of zeolitic imidazolate framework-8 (ZIF-8) are reported. The dominant nuclear spin−lattice relaxation (T1) mechanism for ZIF-8 in air arises from atmospheric paramagnetic molecular oxygen. The C T1 measurements indicate that the oxygen interacts primarily with the imidazolate ring rather than the methyl substituent. Similar relaxation behav...

متن کامل

Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for ...

متن کامل

Top-down patterning of zeolitic imidazolate framework composite thin films by deep X-ray lithography.

For the first time a top-down process was used to control the spatial location of Metal-Organic Frameworks on a surface. Deep X-ray lithography was utilised to micropattern a Zeolitic Imidazolate Framework layer on a sol-gel surface, with exposure hardening the sol-gel by inducing crosslinking while leaving the frameworks intact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016